20 research outputs found

    Beaver: A Decentralized Anonymous Marketplace with Secure Reputation

    Get PDF
    Amid growing concerns of government surveillance and corporate data sharing, web users increasingly demand tools for preserving their privacy without placing trust in a third party. Unfortunately, existing centralized reputation systems need to be trusted for either privacy, correctness, or both. Existing decentralized approaches, on the other hand, are either vulnerable to Sybil attacks, present inconsistent views of the network, or leak critical information about the actions of their users. In this paper, we present Beaver, a decentralized anonymous marketplace that is resistant against Sybil attacks on vendor reputation, while preserving user anonymity. Beaver allows its participants to enjoy open enrollment, and provides every user with the same global view of the reputation of other users through public ledger based consensus. Various cryptographic primitives allow Beaver to offer high levels of usability and practicality, along with strong anonymity guarantees. Operations such as creating a listing, purchasing an item, and leaving feedback take just milliseconds to compute and require generating just a few kilobytes of state while often constructing convenient anonymity sets of hundreds of transactions

    OCEAN: A Built-In Replacement for Mining Pools

    Get PDF
    We propose OCEAN, an alternative miner reward system for blockchains that seeks to discourage pooling by providing a pool\u27s variance mitigation functionality as a blockchain built-in. Our proposal relies on Succinct, Non-interactive Arguments of Knowledge (SNARKs), an advanced modern cryptographic tool that enables anyone to prove complex statements with the proof not growing in size with the complexity of the statement. We expect that blockchains that implement our proposal would see less pooling centralization than what is currently observable in deployed cryptocurrencies

    Tiresias: Predicting Security Events Through Deep Learning

    Full text link
    With the increased complexity of modern computer attacks, there is a need for defenders not only to detect malicious activity as it happens, but also to predict the specific steps that will be taken by an adversary when performing an attack. However this is still an open research problem, and previous research in predicting malicious events only looked at binary outcomes (e.g., whether an attack would happen or not), but not at the specific steps that an attacker would undertake. To fill this gap we present Tiresias, a system that leverages Recurrent Neural Networks (RNNs) to predict future events on a machine, based on previous observations. We test Tiresias on a dataset of 3.4 billion security events collected from a commercial intrusion prevention system, and show that our approach is effective in predicting the next event that will occur on a machine with a precision of up to 0.93. We also show that the models learned by Tiresias are reasonably stable over time, and provide a mechanism that can identify sudden drops in precision and trigger a retraining of the system. Finally, we show that the long-term memory typical of RNNs is key in performing event prediction, rendering simpler methods not up to the task

    Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

    Full text link
    Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201

    Booting the booters: Evaluating the effects of police interventions in the market for Denial-of-Service attacks

    Get PDF
    Illegal booter services offer denial of service (DoS) attacks for a fee of a few tens of dollars a month. Internationally, police have implemented a range of different types of intervention aimed at those using and offering booter services, including arrests and website takedown. In order to measure the impact of these interventions we look at the usage reports that booters themselves provide and at measurements of reflected UDP DoS attacks, leveraging a five year measurement dataset that has been statistically demonstrated to have very high coverage. We analysed time series data (using a negative binomial regression model) to show that several interventions have had a statistically significant impact on the number of attacks. We show that, while there is no consistent effect of highly-publicised court cases, takedowns of individual booters precede significant, but short-lived, reductions in recorded attack numbers. However, more wide-ranging disruptions have much longer effects. The closure of HackForums' booter market reduced attacks for 13 weeks globally (and for longer in particular countries) and the FBI's coordinated operation in December 2018, which involved both takedowns and arrests, reduced attacks by a third for at least 10 weeks and resulted in lasting change to the structure of the booter market.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/M020320/1]

    Predictive Cyber Situational Awareness and Personalized Blacklisting: A Sequential Rule Mining Approach

    Get PDF
    Cybersecurity adopts data mining for its ability to extract concealed and indistinct patterns in the data, such as for the needs of alert correlation. Inferring common attack patterns and rules from the alerts helps in understanding the threat landscape for the defenders and allows for the realization of cyber situational awareness, including the projection of ongoing attacks. In this paper, we explore the use of data mining, namely sequential rule mining, in the analysis of intrusion detection alerts. We employed a dataset of 12 million alerts from 34 intrusion detection systems in 3 organizations gathered in an alert sharing platform, and processed it using our analytical framework. We execute the mining of sequential rules that we use to predict security events, which we utilize to create a predictive blacklist. Thus, the recipients of the data from the sharing platform will receive only a small number of alerts of events that are likely to occur instead of a large number of alerts of past events. The predictive blacklist has the size of only 3 % of the raw data, and more than 60 % of its entries are shown to be successful in performing accurate predictions in operational, real-world settings

    Measuring eWhoring

    Get PDF
    eWhoring is the term used by offenders to refer to a type of online fraud in which cybersexual encounters are simulated for financial gain. Perpetrators use social engineering techniques to impersonate young women in online communities, e.g., chat or social networking sites. They engage potential customers in conversation with the aim of selling misleading sexual material – mostly photographs and interactive video shows – illicitly compiled from third-party sites. eWhoring is a popular topic in underground communities, with forums acting as a gateway into offending. Users not only share knowledge and tutorials, but also trade in goods and services, such as packs of images and videos. In this paper, we present a processing pipeline to quantitatively analyse various aspects of eWhoring. Our pipeline integrates multiple tools to crawl, annotate, and classify material in a semi-automatic way. It builds in precautions to safeguard against significant ethical issues, such as avoiding the researchers’ exposure to pornographic material, and legal concerns, which were justified as some of the images were classified as child exploitation material. We use it to perform a longitudinal measurement of eWhoring activities in 10 specialised underground forums from 2008 to 2019. Our study focuses on three of the main eWhoring components: (i) the acquisition and provenance of images; (ii) the financial profits and monetisation techniques; and (iii) a social network analysis of the offenders, including their relationships, interests, and pathways before and after engaging in this fraudulent activity. We provide recommendations, including potential intervention approaches.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/M020320/1], by MINECO (grant TIN2016-79095-C2-2-R), and by the Comunidad de Madrid (P2018/TCS-4566, co-financed by European Structural Funds ESF and FEDER)

    Tiresias: Predicting Security Events Through Deep Learning

    Get PDF
    With the increased complexity of modern computer attacks, there is a need for defenders not only to detect malicious activity as it happens, but also to predict the specific steps that will be taken by an adversary when performing an attack. However this is still an open research problem, and previous research in predicting malicious events only looked at binary outcomes (eg. whether an attack would happen or not), but not at the specific steps that an attacker would undertake. To fill this gap we present Tiresias xspace, a system that leverages Recurrent Neural Networks (RNNs) to predict future events on a machine, based on previous observations. We test Tiresias xspace on a dataset of 3.4 billion security events collected from a commercial intrusion prevention system, and show that our approach is effective in predicting the next event that will occur on a machine with a precision of up to 0.93. We also show that the models learned by Tiresias xspace are reasonably stable over time, and provide a mechanism that can identify sudden drops in precision and trigger a retraining of the system. Finally, we show that the long-term memory typical of RNNs is key in performing event prediction, rendering simpler methods not up to the task

    Adversarial Matching of Dark Net Market Vendor Accounts

    Get PDF
    Many datasets feature seemingly disparate entries that actually refer to the same entity. Reconciling these entries, or "matching," is challenging, especially in situations where there are errors in the data. In certain contexts, the situation is even more complicated: an active adversary may have a vested interest in having the matching process fail. By leveraging eight years of data, we investigate one such adversarial context: matching different online anonymous marketplace vendor handles to unique sellers. Using a combination of random forest classifiers and hierarchical clustering on a set of features that would be hard for an adversary to forge or mimic, we manage to obtain reasonable performance (over 75% precision and recall on labels generated using heuristics), despite generally lacking any ground truth for training. Our algorithm performs particularly well for the top 30% of accounts by sales volume, and hints that 22,163 accounts with at least one confirmed sale map to 15,652 distinct sellers---of which 12,155 operate only one account, and the remainder between 2 and 11 different accounts. Case study analysis further confirms that our algorithm manages to identify non-trivial matches, as well as impersonation attempts.This is a manuscript of a proceeding published as Tai, Xiao Hui, Kyle Soska, and Nicolas Christin. "Adversarial Matching of Dark Net Market Vendor Accounts." In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1871-1880. 2019. Posted with permission of CSAFE.</p
    corecore